

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-22/0123 of 28 November 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Würth concrete screw W-BS 2/A4 and W-BS 2/HCR

Mechanical fasteners for use in concrete

Adolf Würth GmbH & Co. KG Reinhold-Würth-Straße 12-17 74653 Künzelsau DEUTSCHLAND

Werk 9

19 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 05/2021

ETA-22/0123 issued on 5 May 2022

European Technical Assessment ETA-22/0123 English translation prepared by DIBt

Page 2 of 19 | 28 November 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-22/0123

English translation prepared by DIBt

Page 3 of 19 | 28 November 2022

Specific Part

1 Technical description of the product

The Würth concrete screw W-BS 2/A4 and W-BS 2/HCR is an anchor in size 6, 8 and 10 mm made of stainless steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B4, C1 and C2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1 and C2
Displacements (static and quasi-static loading)	See Annex C5
Characteristic resistance and displacements for seismic performance categorie C1	See Annex C3

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C4

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	See Annex B1

European Technical Assessment ETA-22/0123

Page 4 of 19 | 28 November 2022

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

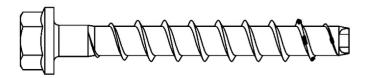
In accordance with European Assessment Document EAD No. 330232-01-0601 the applicable European legal act is: [96/582/EC].

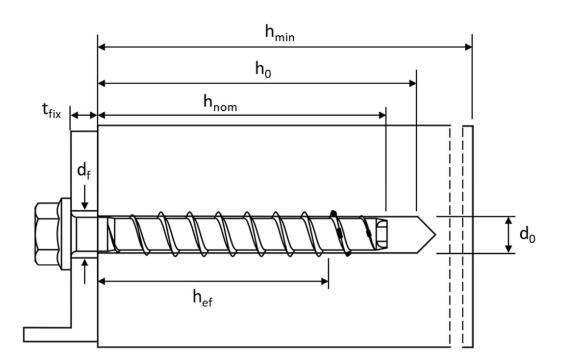
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 28 November 2022 by Deutsches Institut für Bautechnik


Beatrix Wittstock	beglaubigt:
Head of Section	Tempel


Product in installed condition

Würth concrete screw W-BS 2/A4 und W-BS 2/HCR

- Stainless steel A4
- High corrosion resistant steel HCR

e.g., W-BS 2 concrete screw with hexagon head and fixture

 d_0 = nominal diameter of drill hole

 t_{fix} = thickness of fixture

d_f = diameter of clearance hole

h_{min} = minimum thickness of member

h_{nom} = nominal embedment depth

 h_0 = depth of drill hole

h_{ef} = effective embedment depth

Würth concrete screw W-BS 2/A4 and W-BS 2/HCR

Product description

Product in installed condition

Annex A1

Screw types		
	0	Configuration with threaded stud and hexagon drive e.g., W-BS 2 8x105 Type ST M10 SW7
	(4.8 ₀)	Configuration with washer and hexagon head e.g., W-BS 2 6x60 Type S SW13
	(4-80) (0) (-0)	Configuration with washer, hexagon head and TX drive e.g., W-BS 2 6x60 Type S SW13 TX 40
	(4.83)	Configuration with hexagon head e.g., W-BS 2 8x80 Type S SW13
	(4.83) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Configuration with countersunk head and TX drive e.g., W-BS 2 6x60 Type CS TX40
	(4.83) (2) (2) (3)	Configuration with pan head and TX drive e.g., W-BS 2 6x60 Type P TX40
	(P)	Configuration with large pan head and TX drive e.g., W-BS 2 8x80 Type LP TX40
		Configuration with countersunk head and connection thread e.g., W-BS 2 6x55 Type ST-6 M8
		Configuration with hexagon drive and connection thread e.g., W-BS 2 6x55 Type ST-6 SW10
		Configuration with internal thread and hexagon drive e.g., W-BS 2 6x55 Type I M8/M10

Z93308.22 8.06.01-255/22

Annex A2

Würth concrete screw W-BS 2/A4 and W-BS 2/HCR

Product description

Screw types

700

≤8

_			4						
Ta	n	\sim	1	•	1\ /	1	tΔ	rıc	١ı
ıa	IJ	_			10	a	ᇿ	110	31

Part	Name	Product name	Mate	Material		
all to us a s	Stainless Steel A4 CRC III	W-BS 2/A4	1.4401; 1.4404; 1	.4571; 1.4578		
all types	High corrosion resistant steel CRC V	W-BS 2/HCR	1.4529			
		Nominal cha	racteristic steel	Rupture		
Part	Product name	Yield strength f _{yk} [N/mm²]	Ultimate strength f _{uk} [N/mm²]	elongation A ₅ [%]		
all &aa	W-BS 2/A4	F.C.0	700	. 0		

560

Table 2: Dimensions

W-BS 2/HCR

all types

Anchor size				6			8		10		
Nominal embedment depth		h _{nom}	1 ¹⁾	2	3	1	2	3	1	2	3
		[mm]	35	45	55	45	55	65	55	75	85
Screw length	≤L	[mm]		500							
Core diameter	dĸ	[mm]		5,1		7,2			9,2		
Thread outer diameter	d _s	[mm]		7,6			10,5		12,5		

¹⁾ only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

Marking:

W-BS 2/A4 W-BS 2/HCR

TSM or W-BS Screw type: TSM or W-BS Screw type: Screw size: 10 Screw size: 10 Screw length: 100 Screw length: 100 Material: Α4 Material: **HCR**

Filling washer WIT-SHB for screw size 8 and 10

Filling washer WIT-SHB t = 5mm

Würth concrete screw W-BS 2/A4 and W-BS 2/HCR

Product description

Material, dimensions and markings

Annex A3

Z93308.22

Specification of Intended use

Table 3: Anchorages subject to

Concrete screw size	6				8		10			
Nominal embedment	h _{nom}	h _{nom1} 1)	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
depth	[mm]	35	45	55	45	55	65	55	75	85
Static and quasi-static loads			۸۱۱ مناعد	s and a	llombo	dmont	don+he			
Fire exposure		All sizes and all embedment depths								
C1 category - seismic	_2)	ok	ok	ok	_2)	ok	ok	_2)	ok	

¹⁾ only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

Base materials:

- Compacted reinforced and unreinforced concrete without fibers according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Concrete screws in structures subject to dry, internal conditions: all screw types.
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2006 + A1:2015
 - Stainless steel according to Annex A3, screw with marking A4: CRC III
 - High corrosion resistant steel according to Annex A3, screw with marking HCR: CRC V

Würth concrete screw W-BS 2/A4 and W-BS 2/HCR	
Intended use	Annex B1
Specification	

²⁾ no performance assessed

Specification of Intended use - continuation

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.

The design for shear load according to EN 1992-4:2018, Section 6.2.2 applies for all specified diameters d_f of clearance hole in the fixture in Annex B3, Table 4.

Installation:

- Hammer drilling or vacuum drilling. Vacuum drilling only for size 8-10.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site.
- In case of aborted drill hole: new drilling must be drilled at a minimum distance of twice the
 depth of aborted hole or closer, if the aborted hole is filled with high strength mortar and only
 if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.
- The borehole may be filled with injection mortar WIT-BS.
- Adjustability according to Annex B6 for sizes 6-10 except for applications with filled borehole and not for seismic applications.
- Cleaning of borehole is not necessary, if using a vacuum-drill bit.

Würth concrete screw W-BS 2/A4 and W-BS 2/HCR

Intended use
Specification continuation

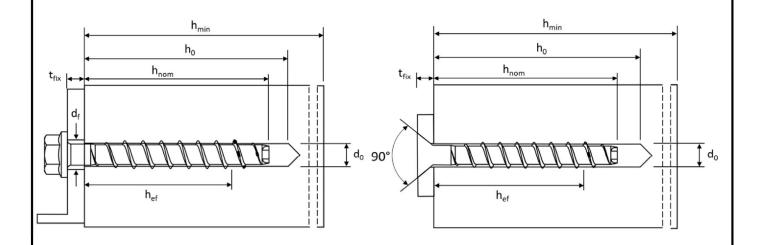

Annex B2

Table 4: Installation parameters

Concrete screw size	6				8		10					
h _{nom}		h _{nom}	h _{nom1} 1)	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment depth		[mm]	35	45	55	45	55	65	55	75	85	
Nominal drill hole diameter	d ₀	[mm]	6			8				10		
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,40			8,45			10,45			
Depth of drill hole	h ₀ ≥	[mm]	40	50	60	55	65	75	65	85	95	
Clearance hole diameter	d _f ≤	[mm]	8			12			14			
Installation torque (version with threaded stud)	T _{inst}	[Nm]	10			20			40			
Torque impact screw	T _{imp,}	[NIm]	Max. torque according to ma			o manı	ufacture	er's ins	truction	าร		
driver	max	[Nm]		160		300		450				

¹⁾ only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

Würth concrete screw W-BS 2/A4 and W-	BS 2/HCR

Intended use Installation parameters

Annex B3

Table 5: Minimum thickness of member, minimum edge distance and minimum spacing

Concrete screw size			6			8			10		
Nominal embedment depth		h _{nom}	h _{nom1} 1)	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment	ueptn	[mm]	35	45	55	45	55	65	55	75	85
Minimum thickness of member	h _{min}	[mm]	80	80	100	80	100	120	100	130	130
Minimum edge distance	C _{min}	[mm]	35	35	35	35	35	35	40	40	40
Minimum spacing	S _{min}	[mm]	35	35	35	35	35	35	40	40	40

¹⁾ only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

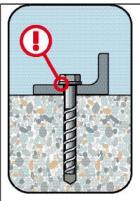
Würth concrete screw W-BS 2/A4 and W-BS 2/HCR

Intended use
Minimum thickness of member, minimum edge distance and minimum spacing

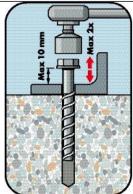
Annex B4

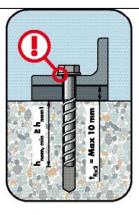
Intended use

Installation instructions


Create hammer drilled or vacuum drilled borehole.
Blow out dust. Alternatively, vacuum clean down to the bottom of the drill hole. If using a vacuum drill bit an additional cleaning of the drill hole is not necessary.
Set the screw.
Install the screw by hand or using a impact screw driver. Consider $T_{imp,max}$ und T_{inst} . Note: For screw size 6 with h_{nom} = 35mm only setting with a impact screw driver is allowed.
Installation was successful when the head of the anchor is fully supported and in contact to the fixture without damaging it.

Z93308.22 8.06.01-255/22


Annex B5


Installation instructions for adjustability

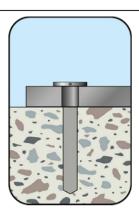
Installation according to **annex B5** until the head of the anchor is fully supported.

The Anchor may be adjusted **max. two times** while the anchor may turn back **at most 10 mm.**

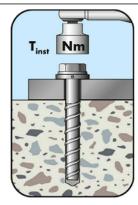
Install the screw again after the adjustment. The total allowed thickness of shims added during the adjustment process is 10mm. The final embedment depth after adjustment process must be equal or larger than h_{nom} .

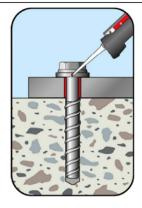
Note: Adjustment for seismic loading is not allowed

Würth concrete screw W-BS 2/A4 and W-BS 2/HCR


Intended use

Installation instructions - Adjustment


Annex B6


. Installation instructions - filling annular gap

After preparing bore hole (Annex B5), position fixture first, then filling washer

Install with impact screwdriver or torque wrench. Consider $T_{\text{imp},\text{max}}$ and T_{inst}

Connect the mixer reduction nozzle to the tip of the mixer. Fill the annular gap with injection mortar. The annular gap is filled with mortar, when mortar oozes out of the washer.

You can use Würth injection mortars with a compressive strength ≥ 40 N/mm² like CONCRETE MULTI WIT-UH 300, ALLROUNDER WIT-VM 250, WIT-PE 1000, or WIT-BS

Observe the processing/installation instructions for the injection mortar.

Note: The thickness of fixture t_{fix} is reduced about 5 mm when using WÜRTH Filling Washer WIT-SHB.A

Note: For seismic loading the installation with filled and without filled annular gap is approved. Differences in performance can be found in Annex C3.

Würth concrete screw W-BS 2/A4 and W-BS 2/HCR

Intended use

Installation instructions - Adjustment

Annex B7

Table 6: Characteristic values for static and quasi-static loading												
Concrete screw si	ze				6			8			10	
Naminal ambadma	nt donth		h_{nom}	h _{nom1} 1)	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedine	Nominal embedment depth			35	45	55	45	55	65	55	75	85
Steel failure for te	Steel failure for tension and shear loading											
Characteristic tensi		$N_{Rk,s}$	[kN]		14,0			27,0			45,0	
Characteristic shea	r load	V ⁰ Rk,s	[kN]		7,0		13	3,5	17,0	22,5	34	,0
Ductility factor		k ₇	[-] 0,8									
Characteristic bend load	ling	M ⁰ _{Rk,s}	[Nm]	10,9			26,0			56,0		
Pull-out failure in uncracked concrete												
Characteristic tensi C20/25	ion load	N _{Rk,p}	[kN]	3,5 ¹⁾	4,0	8,5	9,0	12,0	17,0	11,0	19,0	25,0
	C25/30			1,08	1,12	1,09	1,12	1,12	1,07	1,12	1,12	1,12
Increasing factor	C30/37	111	.,	1,15	1,22	1,17	1,22	1,22	1,13	1,22	1,22	1,22
for $N_{Rk,p}$ = $N_{Rk,p}$ (C20/25) $\cdot \Psi_c$	C40/50	Ψ_{c}	[-]	1,27	1,41	1,30	1,41	1,41	1,23	1,41	1,41	1,41
- 14kk,p (C20/25) 1 C	C50/60			1,38	1,58	1,42	1,58	1,58	1,32	1,58	1,58	1,58
Pull-out failure in	cracked	concre	ete									
Characteristic tension load			[kN]	2,5 ¹⁾	1,5	3,0	3,0	5,5	8,0	6,0	13,0	17,0
	C25/30			1,10	1,08	1,12	1,12	1,12	1,12	1,12	1,09	1,09
Increasing factor	C30/37	1111	,	1,18	1,15	1,22	1,22	1,22	1,22	1,22	1,17	1,17
for N _{Rk,p}	C40/50	Ψ_{c}	[-]	1,32	1,27	1,41	1,41	1,41	1,41	1,41	1,31	1,31
$= N_{Rk,p (C20/25)} \cdot \Psi_c$	C50/60			1,45	1,38	1,58	1,58	1,58	1,58	1,58	1,43	1,43

¹⁾ only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

Würth concrete screw W-BS 2/A4 and W-BS 2/HCR

Performances

Characteristic values for static and quasi-static loading

Annex C1

Table 7: Characteristic values for static and quasi-static loading continuation													
Concrete s	crew size				6		8				10		
Maminal on	abadment denth		h _{nom}	h _{nom1} 1)	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominaren	nbedment depth		[mm]	35	45	55	45	55	65	55	75	85	
Concrete f	ailure: Splitting	failure	, cond	crete cor	 าe failเ	ire and	d pry-o	ut failu	ıre				
Effective en		h _{ef}	[mm]		34	42	32	41	49	40	57	65	
·	cracked	k _{cr}	[-]					7,7					
k-factor	uncracked	k _{ucr}	[-]	11,0									
Concrete	spacing	S _{cr,N}	[mm]] 3 x h _{ef}									
cone failure	edge distance	C _{cr,N}	[mm]	1,5 x h _{ef}									
 Splitting	resistance	N ⁰ Rk,sp	[kN]	3,5 ¹⁾	4,0	8,5	9,0	12,0	17,0	11,0	19,0	25,0	
failure	spacing	S _{cr,Sp}	[mm]	120	160	240	200	240	290	230	280	320	
case 1	edge distance	C _{cr,Sp}	[mm]	60	80	120	100	120	145	115	140	160	
Splitting	resistance	N ⁰ _{Rk,sp}	[kN]	_2)	2,5	5,5	5,5	8,0	11,0	7,0	15,0	20,0	
failure	spacing	S _{cr,Sp}	[mm]	_2)	116	168	128	164	196	160	224	260	
case 2	edge distance	C _{cr,Sp}	[mm]	_2)	58	84	64	82	98	80	114	130	
Factor for p	ry-out failure	k ₈	[-]	1,0	1,	,6	2,1	2	,8		2,5		
Installation	factor	γinst	[-]					1,0					
Concrete e	edge failure												
Effective len	gth in concrete	$I_f = h_{nom}$	[mm]	35	45	55	45	55	65	55	75	85	
Nominal outo	er diameter of	d_{nom}	[mm]		6			8			10		
1) only for sta	tically indetermina	ata nan	ctruct	ural aveta	ma Imil	س مامندا		rdina to	EN 100	2 4.201	ایرامی ۹	in dry	

¹⁾ only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

Würth concrete so	rew W-BS 2/A4	and W-BS 2/HCR

Performances

Characteristic values for static and quasi-static loading continuation

Annex C2

²⁾ no performance assessed

Table 8: Seismic category C1 – Characteristic load values (only type H, type CS, type ST,
type ST-6 ¹⁾ , type P and type I ¹⁾)

Concrete screw size		e	5	8	3	10	
Nominal embedment depth	h _{nom}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom3}	h _{nom1}	h _{nom3}
Nominal embedment depth	[mm]	45	55	45	65	55	85

Steel failure for tension and	d shear	load (v	ersion type	e H, type CS	, type ST, t	ype ST-6 ¹⁾ ,	type P and	type l ¹⁾)	
Characteristic tension load	$N_{Rk,s,eq}$	[kN]	14	١,0	27	7,0	45	5,0	
Partial factor	γ Ms,eq	[-]		1,5					
Characteristic shear load Type H, Type ST, Type P	$V_{Rk,s,eq}$	[kN]	3,5	4,0	8,0	10,0	14,0	16,0	
Characteristic shear load Type CS	$V_{Rk,s,eq}$	[kN]	2,5	2)	4,5	7,0	14,0	10,0	
Partial factor	γ Ms,eq	[-]			1,	25			
Without filling of the annular gap ³⁾	$lpha_{\sf gap}$	[-]	0,5						
With filling of the annular gap ⁴⁾	α_{gap}	[-]			1	,0			

l	Pull-out failure (version type	Pull-out failure (version type H, type CS, type ST, type ST-6 ¹⁾ , type P and type I ¹⁾)									
l	Characteristic tension load in cracked concrete C20/25	$N_{Rk,p,eq}$	[kN]	1,5	3,0	3,0	8,5	6,0	17,0		

Concrete cone failure (version type H, type CS, type ST, type ST-6 ¹⁾ , type P and type I ¹⁾)									
Effective embedment depth	h _{ef}	[mm]	[mm] 34 42 32 49 40 65						
Edge distance	C _{cr,N}	[mm]	1,5 x h _{ef}						
Spacing	S _{cr,N}	[mm]	3 x h _{ef}						
Installation safety factor	γinst	[-]	1,0						

Concrete pry-out failure (version type H, type CS, type ST and type P)								
Factor for pry-out failure k_8 [-] 1,6 2,1 2,8 2,5								
Concrete edge failure (version type H, type CS, type ST and type P)								
Effective length in concrete	I _f =h _{nom}	[mm]	45	55	45	65	55	85
Nominal outer diameter of screw	d _{nom}	[mm]	6		8		10	

¹⁾ only tension load

⁴⁾ with filling of the annular gap according to annex B7

Würth concrete screw W-BS 2/A4 and W-BS 2/HCR	
Performances Seismic category C1 – Characteristic load values	Annex C3

²⁾ no performance assessed

 $^{^{\}rm 3)}$ without filling of the annular gap according to annex B5

Concrete screw siz	ze			6			8			10		
Naminal ambadma	n+ dan+h		h _{nom}	1 ¹⁾	2	3	1	2	3	1	2	3
Nominal embedme	nt depth		[mm]	35	45	55	45	55	65	55	75	85
Steel failure for te	nsion and	shear load						-		-	-	
	R30	N _{Rk,s,fi30}	[kN]		0,9		2,4			4,4		
	R60	N _{Rk,s,fi60}	[kN]	0,8		1,7			3,3			
	R90	N _{Rk,s,fi90}	[kN]		0,6			1,1		2,3		
	R120	N _{Rk,s,fi120}	[kN]		0,4			0,7		1,7		
	R30	$V_{Rk,s,fi30}$	[kN]		0,9			2,4		4,4		
characteristic	R60	$V_{Rk,s,fi60}$	[kN]		0,8			1,7		3,3		
Resistance	R90	$V_{Rk,s,fi90}$	[kN]		0,6			1,1			2,3	
	R120	V _{Rk,s,fi120}	[kN]	0,4			0,7			1,7		
	R30	M ⁰ Rk,s,fi30	[Nm]	0,7			2,4			5,9		
	R60	M ⁰ Rk,s,fi60	[Nm]		0,6		1,8			4,5		
	R90	M ⁰ Rk,s,fi90	[Nm]				1,2			3,0		
R120		M ⁰ Rk,s,fi120	[Nm]		0,3		0,9			2,3		
Pull-out failure												
characteristic	R30-90	N _{Rk,p,fi}	[kN]	0,6	0,4	0,8	0,8	1,4	2,0	1,5	3,3	4,
Resistance	R120	N _{Rk,p,fi}	[kN]	0,5	0,3	0,6	0,6	1,1	1,6	1,2	2,6	3,
Concrete cone fail	ure											
characteristic	R30-90	N ⁰ Rk,c,fi	[kN]	0,5	1,2	2,0	1,0	1,9	2,9	1,7	4,2	5,
Resistance	R120	N ⁰ Rk,c,fi	[kN]	0,4	0,9	1,6	0,8	1,5	2,3	1,4	3,4	4,
Edge distance												
R30 - R120		C _{cr,fi}	[mm]					2 x h _{ef}	;			
In case of fire attack	c from more	e than one s	ide, the	minir	num e	dge d	istanc	e shall	be ≥3	00mn	า.	
Spacing												
R30 bis R120	[mm]	4 x h _{ef}										
Pry-out failure												
R30 bis R120 k ₈		k ₈	[-]	1,0 1,6		,6	2,1 2,8		2,5			
The anchorage dept	th has to be	increased f	or wet	concre	te by	at leas	st 30 n	nm co	mpare	ed to t	he giv	en

only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

Würth concrete screw W-BS 2/A4 and W-BS 2/HCR	
Performances Fire exposure – characteristic values of resistance	Annex C4

Table 10: Dis	nlacomonto	undar	ctatic and	guaci static	tancian land
Table 10. DIS	piacements	unaei	Static and	quasi-static	tension load

Concrete so	rew size	(8			10					
Nominal embedment depth h _{nom}			h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nonmai embeament deptil		[mm]	45	55	45	55	65	55	75	85	
Cracked concrete	tension load	N	[kN]	0,72	1,45	1,63	2,74	4,06	3,04	6,22	8,46
	displacement	δ_{NO}	[mm]	0,19	0,27	0,27	0,53	0,45	0,26	0,58	0,61
		δ _{N∞}	[mm]	0,55	0,84	0,49	0,66	0,61	0,69	0,92	1,1
	1	ı —				ı					
Uncracked concrete	tension load	N	[kN]	2,11	4,07	4,24	5,97	8,03	5,42	9,17	12,28
	alianda a ana ana	δ_{NO}	[mm]	0,42	0,43	0,33	0,49	0,58	0,84	0,62	0,79
	displacement	δ _{N∞}	[mm]	0,42	0,43		0,58			0,79	

Table 11: Displacements under static and quasi-static shear load

Concrete screw size				6	8			10			
Nominal embedment depth h _{nom} [mm]			h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
			[mm]	45	55	45	55	65	55	75	85
Cracked and	shear load	٧	[kN]	3,	8,6			16,2			
uncracked concrete	diamin and and	δ_{V0}	[mm]			2,7			2,7		
	displacement	δ∨∞	[mm]			4,1			4,3		

Würth concrete screw W-BS 2/A4 and W-BS 2/HCR

Performances

Displacements under static and quasi-static loads

Annex C5